加入VIP 上传考博资料 您的流量 增加流量 考博报班 每日签到
   
主题 : 2009年全国优秀博士论文:基于数据驱动的表面质感建模与绘制
级别: 总版主
显示用户信息 
楼主  发表于: 2009-10-10   

2009年全国优秀博士论文:基于数据驱动的表面质感建模与绘制

作者姓名:王嘉平 NS-0-o|4#  
  论文题目:基于数据驱动的表面质感建模与绘制 #x`K4f)  
  作者简介:王嘉平,男,1980年3月出生,2004年7月师从于中国科学院计算技术研究所博士生导师,沈向洋教授,于2007年08月获博士学位。 F)4I70vG  
r+k &W  
  中文摘要 o`G6!  
  真实世界中物体所呈现出丰富的外观取决于物体材质和光的复杂交互作用。作为真实感图形学的核心课题之一,表面质感建模和绘制重点研究如何有效、真实地描述物体“材质”(Material),即物体材料与光的交互作用,使得可以在计算机中绘制出真实的物体光照效果。同时,真实材质数据的测量、模型重建,以及如何使用材质模型进行绘制也是表面材质建模与绘制的重点研究问题。完备性、有效性和易用性是表面质感建模的三个目标。完备性是指模型的表达能力,包括能够表达的光照和视觉效果种类,逼真程度,以及能够描述的真实世界材质的范围等。有效性主要考量模型的参数个数、状态空间的维度以及模型存储空间的复杂度。易用性是指模型的测量、重构以及绘制的难易程度,包括对真实材质进行测量的难易程度和所需条件,和对各种真实感绘制流水线的支持程度等。 >~_z#2PA  
  虽然近年来表面质感建模与绘制的研究已有了长足的发展,但是复杂表面质感的建模,特别是对具有复杂几何和反射属性的粗糙表面材质,半透明材质,以及时变材质的建模还面临着很大挑战。一方面,由于这些材质中材料与光交互作用的物理机制非常复杂,千变万化,甚至具体过程仍然是未知的,使得基于物理的仿真模型很难满足完备性和有效性的要求。另一方面,这些材质所引起的光影效果和光照方向、视线方向、以及入射和出射表面位置相关,构成了八维的双向表面散射反射分布函数(BSSRDF)或其高维简化表达。使得数据采集困难,模型数据量大,无法满足有效性和易用性的要求。 e?FQ6?  
  本论文针对这些挑战,在该领域的三个前沿课题:时变材质建模、粗糙表面材质建模以及半透明材质建模上开展了研究,分别提出了新的材质模型与建模方法,以及高效实用的测量方法。相关成果发表于计算机图形学最高水平的期刊ACM Transactions on Graphics以及图形学最高水平会议ACM SIGGRAPH上。论文的主要内容和创新点如下:   ;hF}"s hJN  
  1.基于“表观流形”(Appearance Manifold)的时变材质模型  [w!T  
  自然界大部分材质都会受外界环境影响而随时间发生变化。这些变化同时导致表面反射属性及其分布的变化。由于这一过程内在的物理化学机制非常复杂和多样,使得基于物理的建模方法很难具有通用性。同时,由于这一变化过程可能历时非常漫长,使得直接测量整个时变序列建模方法非常困难。本论文提出了时变材质的 “表观流形”(Appearance Manifold)模型及其建模算法。表观流形模型揭示了时变材质在时间上变化是渐变的这一基本特性,从而将各种时变材质都表达为高维反射属性空间中的低维流形。在建模算法中,则利用时变材质同一时刻在空间上变化包含处于不同时间阶段样本这一重要特性,引入流形学习(Manifold Learning)的思想,构造高维空间中样本的紧邻拓扑关系。通过分析各个空间样本的相对测地距离以建立不同位置上的表面质感样本在变化趋势上的一致性关系,从而揭示各点上表面质感样本的相对时间关系。继而根据这个关系来推导时变表面质感的空间上和时间上的演化过程。为此论文提出了新的帧间一致性纹理合成技术(Frame-Coherent Texture Synthesis),成功从二维纹理样本在时间变化一致性的约束下合成三维的时变纹理序列,即具有高真实感的表面质感变化序列。 ;A4j_ 8\[  
  表观流形模型是图形学中第一个适用于不同时变材质的通用表观模型。表观流形的分析方法不依赖于时变过程的物理化学机制,而是直接对外观样本进行分析建立模型,具有良好的完备性。论文将模型成功应用于多种不同类型时变材质,如植物枯黄,金属氧化,石头磨光等不同的时变材质等,获得了高度真实的效果。同时模型的建立过程避免了测量时间序列样本,而是通过流形学习技术从静态样本的空间分布中逆向求解时间序列,使得模型测量的时间不依赖于时变过程的速度,从而极大缩短了数据采集的时间,具有很好的易用性。该模型由于只需要一个时间点上的静态样本数据就可以预测时变表面质感的变化过程,使得正/逆模拟真实世界中物体的风化过程成为可能,在文物保护,文化遗产再现等方面也具有现实的应用价值。该项工作发表在2006年的国际图形学年会(ACM  SIGGRAPH)上,收录于国际图形学领域最高水平的期刊ACM Transactions on Graphics (ACM TOG, IF 4.02),并已申请国际专利,受理并公开。论文发表后,已有来自ACM  TOG、IEEE  TVCG等高水平国际期刊论文引用11次。 5h|aX  
  2.基于微面元合成(Microfacet Synthesis)的粗糙表面材质建模方法 #+i:s92],  
  六维的表面变化双向反射分布函数(Spatially Varying Bidirectional Reflectance Distribution Function)在图形学中被用于描述不透明粗糙表面上反射属性。自1999年,国际学者(Dana et al)在ACM  TOG上首次发表双向反射分布函数的测量技术以来,国际图形学界大多采用多视点多光照的测量系统。这种建模和测量方式设备昂贵,数据量大,易用性和有效性较差。国际学者(Gardner et al)于2003年在ACM  TOG上发表了易用的基于线性光源的测量系统,但只能采集各向同性(Isotropic)的表面变化双向反射分布函数。本论文提出了一个基于微面元的样本合成算法用于建模表面变化双向反射分布函数。该方法采用基于微面元(Microfacet)的表面反射模型,利用表面各点反射属性的相关性和冗余性,通过单一视点下的四维反射数据样本来重构并合成表面在任意视点下的六维表面变化双向反射分布函数,并能够很好的处理各向异性(Anisotropic)的双向反射分布函数。论文进一步提出了基于空间剪枝、样本空间聚类和局部欧氏空间线性重建的加速算法,将合成算法复杂度从O(N2R)降至O(Nlog(NR))。基于微面元的模型将模型数据量从O(N6)降低为O(N4),提高了模型方法的有效性。基于微面元合成建模方法则可以从单一视点的采样数据建模并重构表面反射属性,从而避免了图像配准(Image Registration)操作,降低了测量高分辨率材质难度,充分利用成像系统的解析度,因而具有极佳的易用性。基于该建模算法,论文同时提出了一个低成本的测量系统用于获得高质量表面反射属性数据。该项工作发表在ACM SIGGRAPH 2008,收录于ACM TOG,并已申请国际专利,正在审批中。 maeQ'Sv_&  
  3.基于扩散方程的通用异质半透明材质模型 8!YQ9T[  
  本论文提出基于扩散方程(Diffusion Equation)的通用次表面散射模型,用于异质半透明材质的建模、测量以及实时绘制。模型采用偏微分方程简洁有效地描述了异质半透明物体内部的次表面散射。基于该模型,论文提出了逆向求解建模算法(Inverse Diffusion Equation),实现了图形学中首个异质半透明材质次表面散射属性测量与重构算法及其GPU并行实现,通过异质半透明物体外观的稀疏测量数据有效地恢复物体内部的材质属性与空间分布。基于该模型,论文同时提出了首个支持不同光照条件和实时材质编辑的次表面散射实时绘制算法。为了支持可形变异质半透明物体的实时绘制,本文提出了Polygrid体网格模型,该体网格模型具有一致6连接的拓扑结构并可以描述任意形状的物体。这一结构使扩散方程的在各个结点上能够有一致的计算方式,便于并行算法的高效实现。本文提出的异质半透明材质模型优于国际学者(Jensen et al)于2001年在ACM TOG上提出的同质(Homogeneous)半透明材质Dipole模型,而可用于描述异质及同质半透明材质,具有更好的完备性。模型利用物体内部空间材质属性和分布通过扩散方程快速计算次表面散射,和基于表面采样的表达与绘制方式相比,数据量从O(N4) 降低为O(N3),具有良好的有效性。而在易用性上,论文所提出的建模方法突破了国际学者(Peers et al)于2006年发表于ACM TOG的基于密集光束测量系统,提出了基于稀疏光场的测量系统,大大减少了测量过程中的图像采集数量。同时绘制算法复杂度从O(N4) 降低为O(N3), 并适于GPU并行实现。该项工作发表在ACM TOG上,并已申请国际专利,正在审批中。 $41<ldJ  
  4.准同质(Quasi-homogeneous)半透明材质模型 K1o>>388G  
  准同质半透明材质是一类由很多具有相似材质属性的颗粒单元构成的材质,如面包,海绵等。准同质半透明既有复杂的几何细微结构(粗糙表面)又有复杂的次表面光线散射过程(半透明),因而其材质建模也成为一个难题。本文提出了一个准同质半透明材质的多尺度材质模型。该模型基于本文对准同质半透明材料次表面散射特性的一个重要发现:其在局部,由于材质的异构性,次表面散射是各向异性的。而整体上,光子在穿越有一定长度且均匀分布的异质材料时,其轨迹在统计意义上和穿越同质材料类似。据此本文建立了全局和局部分解的光线传输模型,有效的将材质上八维的BSSRDF光线传输函数表达为一系列低维的全局和局部传输模型,并提出了该模型相应的测量与重构算法。从而可以准确有效的描述准同质材质中全局光线传播,以及光线通过表面的细微结构传入、传出物体的情况该模型不需要费时的次表面光线传输的物理仿真,就计算出射光强的分布,以实现快速绘制。实验证实模型可真实有效的模拟对准同质半透明材质中光传输过程,生成真实的绘制结果,具有良好的有效性。本模型是计算机图形学领域第一个可以从真实物体上测量并重构的BSSRDF材质模型。该项工作已发表在ACM SIGGRAPH 2005,收录在同年的ACM TOG里,并已获国际专利(US 7,312,797)。迄今论文已有来自ACM TOG、IEEE TVCG, CGF等高水平国际期刊上的论文引用12次。 9yaTDxB>  
l fF RqZ  
  关键词:  真实感绘制,实时绘制,双向纹理函数,着色模型,双向反射分布函数,次表面散射,时变材质,扩散方程,自然现象 Pm%5c\ef  
-%| ] d ;  
评价一下你浏览此帖子的感受

精彩

感动

搞笑

开心

愤怒

无聊

灌水

  
关键词: 博士
级别: 总版主
显示用户信息 
沙发  发表于: 2009-10-10   
Data-Driven Appearance Modeling 8#g}ev@|u  
Jiaping Wang cvo+{u$s  
ABSTRACT tzfyS#E  
Appearance modeling and rendering is the core topic in computer graphics research, and is the foundation of realistic rendering. Appearance modeling aims to model how light interacts with objects surfaces and reproduce the measured appearance including surfaces of real world materials. A data-driven approach of appearance modeling is proposed in this dissertation. The data-driven approach expresses the intrinsic mechanism of appearance generation in multiple ways, including model decomposition and intrinsic data model. The data-driven approach allows simultaneously use of different methods to handle the decomposed sub-models based on their characteristics. Advantages of different appearance models are integrated in data-driven model and are successfully applied in modeling time-variant materials, translucent materials and surface meso-structure.    otfmM]f  
·        A visual simulation technique called appearance manifolds is proposed for modeling the time-variant surface appearance of a material from data captured at a single instant in time. In modeling time variant appearance, our method takes advantage of the key observation that concurrent variations in appearance over a surface represent different degrees of weathering. By reorganizing these various appearances in a manner that reveals their relative order with respect to weathering degree, our method infers spatial and temporal appearance properties of the material’s weathering process that can be used to convincingly generate its weathered appearance at different points in time. Results with natural non-linear reflectance variations are demonstrated in applications such as visual simulation of weathering on 3D models, increasing and decreasing the weathering of real objects, and material transfer with weathering effects. The proposed appearance manifold technique generates weathering sequences that are consistent with the changing local reflectance characteristics of a material over time. It complements existing visual simulation techniques that are designed to compute weathering degree distributions, and leads to various weathering applications for synthetic 3D models, real weathered objects, and even single snapshots of weathered objects. With this method, the input data is simple to acquire, and natural non-linear appearance variations over time are easy to produce. This paper was published in Proceedings of ACM SIGGRAPH 2006 and ACM Transactions on Graphics, Volume 25, Issue 3, 2006. Lq ;~6  
·        A novel technique for the visual modeling of spatially varying anisotropic reflectance using data captured from a single view is proposed. Reflectance is represented using a microfacet-based BRDF which tabulates the facets’ normal distribution (NDF) as a function of surface location. Data from a single view provides a 2D slice of the 4D BRDF at each surface point from which we fit a partial NDF. The fitted NDF is partial because the single view direction coupled with the set of light directions covers only a portion of the “half-angle” hemisphere. We complete the NDF at each point by applying a novel variant of texture synthesis using similar, overlapping partial NDFs from other points. Our similarity measure allows azimuthal rotation of partial NDFs, under the assumption that reflectance is spatially redundant but the local frame may be arbitrarily oriented. Our system includes a simple acquisition device that collects images over a 2D set of light directions by scanning a linear array of LEDs over a flat sample. Results demonstrate that our approach preserves spatial and directional BRDF details and generates a visually compelling match to measured materials. Our microfacet synthesis technique generates anisotropic, spatially varying surface reflectance consistent with the appearance of real measured appearance. A variety of materials has been modeled and reproduced successfully data captured from a single view. Our method avoids image registration and greatly simplifies data acquisition and processing. This paper was published in Proceedings of ACM SIGGRAPH 2008 and ACM Transactions on Graphics, Volume 27, Issue 3, 2008. :3XvHL0rx  
·        We propose techniques for modeling and rendering of general heterogeneous translucent materials that enable acquisition from measured samples, interactive editing of material attributes, and real-time rendering. The materials are assumed to be optically dense such that multiple scattering can be approximated by a diffusion process described by the diffusion equation. For modeling heterogeneous materials, we present the inverse diffusion algorithm for acquiring material properties from appearance measurements. This modeling algorithm incorporates a regularizer to handle the ill-conditioning of the inverse problem, an adjoint method to dramatically reduce the computational cost, and a hierarchical GPU implementation for further speedup. To render an object with known material properties, we present the polygrid diffusion algorithm, which solves the diffusion equation with a boundary condition defined by the given illumination environment. This rendering technique is based on representation of an object by a polygrid, a grid with regular connectivity and an irregular shape, which facilitates solution of the diffusion equation in arbitrary volumes. Because of the regular connectivity, our rendering algorithm can be implemented on the GPU for real-time performance. We demonstrate our techniques by capturing materials from physical samples and performing real-time rendering and editing with these materials. This paper was published in ACM Transaction on Graphics, Volume 27, Issue 1, 2008. I'^XEl?   
·        Many translucent materials consist of evenly-distributed heterogeneous elements which produce a complex appearance under different lighting and viewing directions. For these quasi-homogeneous materials, existing techniques do not address how to acquire their material representations from physical samples in a way that allows arbitrary geometry models to be rendered with these materials. We propose a model for such materials that can be readily acquired from physical samples. This material model can be applied to geometric models of arbitrary shapes, and the resulting objects can be efficiently rendered without expensive subsurface light transport simulation. In developing a material model with these attributes, we capitalize on a key observation about the subsurface scattering characteristics of quasi-homogeneous materials at different scales. Locally, the non-uniformity of these materials leads to inhomogeneous subsurface scattering. For subsurface scattering on a global scale, we show that a lengthy photon path through an even distribution of heterogeneous elements statistically resembles scattering in a homogeneous medium. This observation allows us to represent and measure the global light transport within quasi-homogeneous materials as well as the transfer of light into and out of a material volume through surface meso-structures. We demonstrate our technique with results for several challenging materials that exhibit sophisticated appearance features such as transmission of back illumination through surface meso-structures. This paper was published in ACM SIGGRAPH 2005 and ACM Transaction on Graphics Volume 24, Issue 3, 2005. uD?RL~M  
GF9[|). T  
Key words: Realistic rendering, Real-time rendering, Bidirectional texture functions, Reflectance and shading models, BRDF, Subsurface scattering, Time-variant material, Diffusion Equation, Natural Phenomena
描述
快速回复

验证问题:
免费考博网网址是什么? 正确答案:freekaobo.com
按"Ctrl+Enter"直接提交