加入VIP 上传考博资料 您的流量 增加流量 考博报班 每日签到
   
主题 : 2009年全国优秀博士论文:雷达高分辨距离像目标识别方法研究
级别: 总版主
显示用户信息 
楼主  发表于: 2009-10-10   

2009年全国优秀博士论文:雷达高分辨距离像目标识别方法研究

作者姓名:杜兰 =o{zw+|% %  
  论文题目:雷达高分辨距离像目标识别方法研究 ub+>i  
  作者简介:杜兰,女, 1980年3月出生,2001年8月师从于西安电子科技大学保铮教授(硕博连读),于2007年6月获博士学位(期间于2004年3月获硕士学位,2005年7月评定为讲师)。 <|hvH  
1U@qR U  
  中文摘要 sA3 4`ZAa  
  高分辨距离像(HRRP)是用宽带雷达信号获取的目标散射点子回波在雷达射线上投影的向量和,它提供了目标散射点沿距离方向的分布情况,是目标重要的结构特征,对目标识别与分类十分有价值,因而成为雷达自动目标识别(RATR)领域研究的热点。本论文主要围绕着“十五”和“十一五”国防预研计划项目“目标识别技术”(项目编号:413070501和51307060601)及国家自然科学基金项目“基于高距离分辨回波序列的雷达目标识别技术”(项目编号:60302009)的研究任务,从高分辨距离像的物理特性分析、特征提取和特征选择以及分类器设计这三个基本层次展开对雷达高分辨距离像目标识别的相关理论与技术问题的研究。 jf*M}Q1jHE  
  论文内容可概括为如下五部分: !ygh`]6V  
  第一部分,从目标的散射点模型出发,对高分辨距离像的物理特性进行了深入的研究,指出方位敏感性、平移敏感性和强度敏感性是雷达HRRP目标识别需要首先解决的三大问题。并针对最常用的模板匹配法,提出雷达高分辨距离像目标识别的基本思路,为后续的研究奠定基础。 lY.FmF}k  
  第二部分,研究雷达HRRP目标识别的特征提取和特征选择方法,工作有以下三点。(1)针对高分辨距离像的平移敏感性问题,研究基于高阶谱特征的雷达高分辨距离像目标识别。类似于近年来在目标识别领域中常用的在低维空间实现高维映射空间欧氏距离计算的核方法,本论文通过分析高阶谱域欧氏距离和原始像域欧氏距离的关系,得出在原始像域计算高阶谱域欧氏距离的方法,使高阶谱特征在目标识别中的应用具有现实意义。(2)基于散射点模型理论,提出了一种利用距离像幅度起伏特性的特征提取新方法。新方法提取的加权距离像特征有效地融合了帧距离像的散射点强度分布像和方差像,反映了各个距离单元内目标散射点的分布情况,可以更好地描述目标散射特性。(3)基于Fisher可分性判据,提出了一种加权特征选择方法。该方法根据雷达HRRP目标识别的具体特点,对HRRP的平移不变特征——功率谱特征采用基于Fisher判决率的迭代算法搜索最优权向量。与直接使用原始特征及现有的特征选择方法相比,本论文提出的特征选择方法既可以降维,又提高了识别性能,而且运算简单。 ,U],Wu)  
  第三部分,详细讨论雷达HRRP的统计建模问题,主要工作涉及以下三个大的方面。一、讨论在统计识别中解决HRRP样本方位、平移和强度敏感性的方法,为HRRP的统计建模工作奠定基础。二、在HRRP样本各距离单元回波相互独立的假设前提下,提出了一种基于Gamma和Gaussian Mixture两种分布形式的独立双分布复合模型。三、进一步的研究表明HRRP样本各距离单元回波相互独立的假设并不完全成立,因此,我们又研究了更精确的基于HRRP样本各距离单元回波相关统计特性的统计识别方法,具体工作包括以下两点。(1)考虑到用于识别的HRRP样本在2-范数强度归一化后都位于单位超球面上,针对于幂次变换后趋于Joint-Gaussian分布的HRRP数据,提出了一种改进的基于子空间近似的统计识别方法。(2)研究发现HRRP样本各距离单元回波的联合分布近似因子分析(FA)模型描述的Joint-Gaussian分布,这表明在雷达HRRP统计识别中并不需要使用复杂的Joint-Gaussian Mixture模型(如FA Mixture模型),这大大降低了统计识别的难度。进而,针对基于FA模型的雷达HRRP统计识别,提出了一种自适应模型选择算法。该算法可以同时解决因子个数选择和方位帧划分这两个模型选择问题。 -AD3Pd|Y[  
  第四部分,研究基于复数HRRP样本的雷达目标识别方法。在分析复数HRRP样本特性的基础上,指出由于初相敏感性问题,原先适用于实数HRRP样本的方位模板、识别方法和特征提取方法一般都不能直接用于基于复数HRRP的RATR,我们必须重新寻找既与复数HRRP样本的初相无关又能利用其剩余相位信息的方法。进而,在识别方法方面,分析指出基于主分量分析(PCA)子空间的最小重构误差法既可以回避复数HRRP样本的初相敏感性问题又可以利用复数HRRP样本的其余相位信息,因而,该识别方法适用于基于复数HRRP的RATR,并提出了该方法相应的平移匹配快速算法;此外,在特征提取方法方面,提出了一种用于复数HRRP样本的初相无关特征提取方法,对实数HRRP样本适用的识别方法、方位模板和预处理方法同样适用于该复特征向量。因此,本论文的研究使基于复数HRRP的RATR成为可能。而且,基于实测数据的识别实验表明,使用复数HRRP样本可以取得比实数HRRP样本更好的识别性能。 D7[ 8*^  
  第五部分,研究如何用少量的简单分类器解决多类目标识别问题。由于HRRP样本的方位敏感性,雷达HRRP目标识别是典型的多类目标识别问题。本论文提出了一种基于超立方体和超网格自组织映射(SOM)编码的多类目标识别方法。该方法的优势体现在:一方面将基于二分类的多类目标识别方法扩展为基于 分类的 ( )类目标识别方法;另一方面只需要少量的二分类或 分类分类器,因此,大大减小了多类目标识别对运算量和存储量的需求。 ="d}:Jl  
@,i:fY  
  关键词:  雷达自动目标识别 高分辨距离像 散射点模型 高阶谱特征 基于参数化模型的统计识别方法 模型选择 初相敏感性 多类目标识别 d01bt$8>  
g>/,},jv[x  
评价一下你浏览此帖子的感受

精彩

感动

搞笑

开心

愤怒

无聊

灌水

  
关键词: 博士
级别: 总版主
显示用户信息 
沙发  发表于: 2009-10-10   
Study on Radar HRRP Target Recognition (O\5gAx  
Du Lan ] 8+!  
ABSTRACT a+uSCs[C  
   ., o=#  
A high-resolution range profile (HRRP) is the amplitude of the coherent summations of the complex time returns from target scatterers in each range resolution cell, which represents the projection of the complex returned echoes from the target scattering centers onto the radar line-of-sight (LOS). It contains the target structure signatures, such as target size, scatterer distribution, etc., thereby radar HRRP target recognition has received intensive attention from the radar automatic target recognition (RATR) community. The theory and techniques for radar HRRP target recognition are researched from the three aspects, i.e. analysis on the physical property of HRRP samples, feature extraction and feature selection, and classification methods, in this dissertation, which are supported by Advanced Defense Research Programs of China (No. 413070501 and No. 51307060601) and National Science Foundation of China (No. 60302009). {tOu+zy  
The main content of this dissertation is summarized as follows. ,=Xr'7w,  
· Based on the scattering center model, the first part makes a detailed analysis on the physical property of HRRP samples, and points out that how to deal with the target-aspect, time-shift and amplitude-scale sensitivity of HRRP samples is a challenging task for radar HRRP target recognition. Then a framework for HRRP-based RATR by template matching method (TMM) is established, which forms the basis for the following study.   eL0U5>#  
· The second part focuses on feature extraction and feature selection for HRRP-based RATR. The main work includes: 1) Due to the huge storage requirement and the complex computation, higher-order spectra features receive less attention from RATR community. Similar to the well-known kernel method in automatic target recognition (ATR) community, in which the Euclidean distances in the high dimensional mapped space can be calculated in the low dimensional original space, a method for calculating the Euclidean distances in higher-order spectra feature space is proposed in this dissertation, which is performed in original HRRP space directly and can avoid calculating the higher-order spectra, effectively reducing the computation complexity and storage requirement. 2) According to the scattering center model, a new feature extraction method using the amplitude fluctuation property of HRRP samples is proposed in this dissertation. The weighted HRRP vector extracted by the new method can effectively fuse the corresponding frame’s stcatterer strength distributing profile and variance profile, and represent the scatterer distribution in every range cell, thereby it can describe the scattering property of a target better. 3) Based on the Fisher’s linear discriminant, a weighted feature selection method is proposed. According to the characteristics of radar HRRP target recognition, the proposed weighted feature selection method use the iterative algorithm based on the Fisher’s discriminant ratio to search the optimal weight for the time-shift invariant feature, i.e. power spectrum. Compared with using the raw feature vectors and some existing feature selection methods, the weighted feature selection method not only can reduce the feature dimension, but also can improve the recognition performance with low computational complexity.   5T:e4U&  
· The third part is contributed to radar HRRP statistical modeling. The main work concerns the following three aspects. Firstly, we make a detailed analysis on the effect of the three sensitivity problems of HRRP samples on statistical recognition, and propose our corresponding solution, which forms the basis for the study on radar HRRP statistical modeling. Secondly, under the hypothesis that the elements in an HRRP sample are statistically independent, we develop an independent statistical model comprising two distribution forms, i.e. Gamma distribution and Gaussian mixture distribution, to model echoes of different types of range cells as different distribution forms. Thirdly, theoretical analysis and our experimental results based on measured data show that the independence assumption is not true, thus we further make a study on the more accurate statistical recognition methods based on HRRP samples’ jointly statistical characteristics. Our work includes: 1) Different from general target recognition problems, L2 normalized samples are applied to HRRP-based RATR to deal with the amplitude-scale sensitivity problem, therefore, geometrically speaking, HRRP samples spread on a unit hypersphere. We propose a modified statistical recognition method based on subspace approximation for power transformed HRRP samples under the joint-Gaussian distribution hypothesis. 2) According to the experiments based on measured data, HRRP samples approximately follow the joint-Gaussian distribution described by factor analysis (FA) model. Therefore, we can apply FA model to radar HRRP statistical recognition rather than a joint-Gaussian mixture model, e.g. FA mixture model, which is a more accurate choice for modeling non-Gaussian distributed correlations in multidimensional data but with high learning complexity and large computation burden. Furthermore, an iterated algorithm for model selection of FA model in radar HRRP statistical recognition is proposed, which can automatically give the optimal aspect-frame boundaries and determine the optimal number of factors in each aspect-frame. CDK0 $W n  
· The forth part focuses on RATR using complex HRRP samples. Based on the analysis on the physical property of complex HRRP samples, we point out that the frame template, classification algorithm and feature extraction method for complex HRRP samples should be unvaried with the initial phases. In the existing classification methods, the principal component analysis (PCA)-based minimum reconstruction error approximation is independent of the initial phases yet exploits the remaining phase information in complex HRRP samples, therefore, this method can be used in complex HRRP-based RATR, and a fast time-shift compensation algorithm is proposed for this method. In addition, we propose a novel feature extraction method invariant with the initial phases for complex HRRP samples. The recognition algorithms, frame-template establishment methods and preprocessing methods used in the real HRRP-based RATR can also be applied to the proposed complex feature vector-based RATR. Therefore, based on the aforementioned research, complex HRRP-based RATR becomes practical. Furthermore, in the recognition experiments based on measured data, complex HRRP samples can obtain better recognition results than real HRRP samples.   4sP0oe[h  
· The fifth part is contributed to multicategory classification by a small number of simple classifiers. Due to the target-aspect sensitivity of HRRP samples, radar HRRP target recognition is a typical multicategory classification problem. We propose a multicategory classification method based on hypercube/hypergrid self-organization mapping (SOM) scheme. The advantageous of this method includes: 1) We can not only use binary classifiers but also -ary ( ) classifiers for -class problem; 2) The needed binary or -ary classifiers in this method are few, therefore, the computation complexity and storage requirement can be greatly reduced. ; "ux{ .  
   /[q6"R!uMz  
   E<:XHjm  
p3&/F=T;)  
Key words:   Radar automatic target recognition (RATR), High-resolution range profile (HRRP), Scattering center model, Higher-order spectra, Statistical recognition based on parametric models, Initial phase sensitivity, Multicategory classification
级别: 初级博友
显示用户信息 
板凳  发表于: 2011-08-12   
Dq/_^a/1  
您所需要的,正是我们擅长的!一鸣论文网 ~Z9Eb|B  
邮箱:easyyxlw@163.com 4z kn~oy  
qq:  819455323     P"Lk(gY  
描述
快速回复

验证问题:
免费考博论坛网址是什么? 正确答案:freekaobo.com
按"Ctrl+Enter"直接提交