2009南开大学英语考博试题(回忆版)-yam |F iL1_
g%4-QCZ,
听力:20分,很往年一样,单选10个,短文3篇共10题10分,感觉听不太清楚 k10dkBoEX
lw\OsB$
单词题:10个,10分,今年的很简单,六级就够了 <ij;^ygYD
c}U&!R2p{
作文(20分) : on enforcement of the morality in China 3R
!Mfz*
提纲:1,问题 2, 分析原因 3,对策 200words MV-fDqA(
B;SYO>.W
阅读理解 共4篇40分: =4RnXZ[P0
第一题,有关公司内部职员股票; 经济 {-PD3 [f"
第二题,有关霍金的Big Bang,黑洞理论;物理 4hg#7#?boW
第三题,有关对黑人的歧视;测谎仪,政治 Co4QWyt:
第四题,生物入侵;生物 R
Q X
?}D@{%O3T
改错题10空10分,原文: aW$sd)
Whenever you see an old film, even one made as little as ten years ago, you cannot help being struck by the appearance of the women taking part. Their hair-styles and make-up look dated; their skirts look either too long or too short; their general appearance is, in fact, slightly ludicrous. The men taking part in the film, on the other hand, are clearly recognizable. There is nothing about their appearance to suggest that they belong to an entirely different age. This illusion is created by changing fashions. Over the year, the great majority of men have successfully resisted all attempts to make them change their style of dress. The same cannot be said for women. Each year a few so- called top designers in Paris or London lay down the law and women the whole world over rush to obey. The decrees of the designers are unpredictable and dictatorial. This year, they decide in their arbitrary fashion, skirts will be short and waists will be high; zips are in and buttons are out. Next year the law is reversed and far from taking exception, no one is even mildly surprised. Sy6Y3 ~7
If women are mercilessly exploited year after year, they have only themselves to blame. Because they shudder at the thought of being seen in public in clothes that are out of fashion, they are annually black-mailed by the designers and the big stores. Clothes, which have been worn, only a few times have to be discarded because of the dictates of fashion. When you come to think of it, only a women is capable of standing in front of a wardrobe packed full of clothes and announcing sadly that she has nothing to wear. %?' jyK
Changing fashions are nothing more than the deliberate creation of waste. Many women squander vast sums of money each year to replace clothes that have hardly been worn. Women, who cannot afford to discard clothing in this way, waste hours of their time altering the dresses they have. Hem-limes are taken up or let down; waist-lines are taken in or let out; neck-lines are lowered or raised, and so on. (%rO'X
No one can claim that the fashion industry contributes anything really important to society. Fashion designers are rarely concerned with vital things like warmth, comfort and durability. They are only interested in outward appearance and they take advantage of the fact that women will put up with any amount of discomfort, providing they look right. There can hardly be a man who hasn’t at some time in his life smiled at the sight of a woman shivering in a flimsy dress on a wintry day, or delicately picking her way through deep snow in dainty shoes. HpiP"Sl
When comparing men and women in the matter of fashion, the conclusions to be drawn are obvious. Do the constantly changing fashions of women’s clothes, one wonders, reflect basic qualities of fickleness and instability? Men are too sensible to let themselves be bullied by fashion designers. Do their unchanging styles of dress reflect basic qualities of stability and reliability? That is for you to decide. /[#<@o
)(oRJu)y
阅读相对论原文: vj]-p=
Stephen William Hawking Biography +H,/W_/g
The theories of British physicist and mathematician Stephen William Hawking (born 1942) placed him in the great tradition of Newton and Einstein. Hawking made fundamental contributions to the science of cosmology--the study of the origins, structure, and space-time relationships of the universe. w^s|YF=c
i(Cd#1<
Stephen W. Hawking was born on January 8, 1942, in Oxford, England. His father, a well-known researcher in tropical medicine, urged his son to seek a career in the sciences. Stephen found biology and medicine too descriptive and lacking in exactness. Therefore, he turned to the study of mathematics and physics. )[|`-M~u
Vahfz8~w/
Hawking was not an outstanding student at St. Alban's School, Hertfordshire, nor later at Oxford University, which he entered in 1959. He was a sociable young man who did little schoolwork because he was able to grasp the essentials of a mathematics or physics problem quickly and intuitively. While at Oxford he became increasingly interested in relativity theory and quantum mechanics, eventually graduating with a first class honors in physics (1962). He immediately began post-graduate studies at Cambridge University. h.gj4/g
Ob$|IH
8.
The onset of Hawking's graduate education at Cambridge marked a turning point in his life. It was then that he embarked upon the formal study of cosmology that focused his intellectual energies in a way that they had never been previously. And it was then that he was first stricken with amyotrophic lateral sclerosis (Lou Gehrig's disease), a debilitating neuromotor disease that eventually led to his total confinement to a wheelchair and to a virtual loss of his speech functions. At Cambridge his talents were recognized by his major professor, the cosmologist Dennis W. Sciama, and he was encouraged to carry on his studies despite his growing physical disabilities. His marriage in 1965 to Jane Wilde was an important step in his emotional life. Marriage gave him, he recalled, the determination to live and make professional progress in the world of science. Hawking received his doctorate degree in 1966 and began his life-long research and teaching association with Cambridge University. FaYD
a
_Qs=v0B//
Hawking made his first major contribution to science with his theorem of singularity, a work which grew out of his collaboration with theoretician Roger Penrose. A singularity is a place in either space or time at which some quantity becomes infinite. Such a place is found in a black hole, the final stage of a collapsed star, where the gravitational field has infinite strength. Penrose proved that a singularity was not a hypothetical construct; it could exist in the space-time of a real universe. /~yk
l`G .lM(
Drawing upon Penrose's work and on Einstein's General Theory of Relativity, Hawking demonstrated that our universe had its origins in a singularity. In the beginning all of the matter in the universe was concentrated in a single point, making a very small but tremendously dense body. Ten to twenty billion years ago that body exploded in a big bang which initiated time and the universe. Hawking was able to bring current astrophysical research to support the big bang theory of the origin of the universe and refute the rival steady-state theory. w[~O@:`]<o
Nih8(pbe
Hawking's research into the cosmological implications of singularities led him to study the properties of the best-known singularity: the black hole. Although a black hole is a discontinuity in space-time, its boundary, called the event horizon, can be detected. Hawking proved that the surface area of the event horizon of a black hole could only increase, not decrease, and that when two black holes merged the surface area of the new hole was larger than the sum of the two original surface areas. Working in concert with B. Carter, W. Israel, and D. Robinson, Hawking was also able to prove the "No Hair Theorem" first proposed by physicist John Wheeler. According to this theorem, mass, angular momentum, and electric charge were the sole properties conserved when matter entered a black hole. PJA%aRP,:
|_@ '_
Hawking's continuing examination of the nature of black holes led to two important discoveries. The first of them, that black holes can emit thermal radiation, was contrary to the claim that nothing could escape from a black hole. The second concerned the size of black holes. As originally conceived, black holes were immense in size because they were the end result of the collapse of gigantic stars. Using quantum mechanics to study particle interaction at the subatomic level, Hawking postulated the existence of millions of mini-black holes. These were formed by the force of the original big bang explosion. 1K.i>]}>
AP&mr1_
Hawking summarized his scientific interests as "gravity--on all scales," from the realm of galaxies at one extreme to the subatomic at the other extreme. In the 1980s Hawking worked on a theory that Einstein unsuccessfully searched for in his later years. This is the famous unified field theory that aims to bring together quantum mechanics and relativity in a quantum theory of gravity. A complete unified theory encompasses the four main interactions known to modern physics: the strong nuclear force, which operates at the subatomic level; electromagnetism; the weak nuclear force of radioactivity; and gravity. The unified theory would account for the conditions which prevailed at the origin of the universe as well as for the existing physical laws of nature. When humans develop the unified field theory, said Hawking, they will "know the mind of God." V`s
INX
PzbLbH8A
As his physical condition grew worse Hawking's intellectual achievements increased. Not content with causing a revolution in cosmology, he presented a popular exposition of his ideas in A Brief History of Time: From the Big Bang to Black Holes. First published in 1988, this book acquired great popularity in the United States. It sold over a million copies and was listed as the best-selling nonfiction book for over a year. RoCX*3 d
owHhlS{
In 1993 Hawking wrote Black Holes and Baby Universes and Other Essays, which, in addition to a discussion of whether elementary particles that fall into black holes can form new, "baby" universes separate from our own, contains chapters about Hawking's personal life. He co-authored a book in 1996 with Sir Roger Penrose titled The Nature of Space and Time, which is based on a series of lectures and a final debate by the two authors. Issues discussed in this book include whether the universe has boundaries and if it will continue to expand forever. Hawking says yes to the first question and no to the second, while Penrose argues the opposite. Hawking joined Penrose again the following year, as well as Abner Shimony and Nancy Cartwright, in the creation of another book, The Large, the Small, and the Human Mind (1997). In this collection of talks given as Cambridge's 1995 Tanner Lectures on Human Values, Hawking and the others respond to Penrose's thesis on general relativity, quantum physics, and artificial intelligence. dr#g[}l'H
=:OS"qD3l
Hawking's work in modern cosmology and in theoretical astronomy and physics was widely recognized. He became a fellow of the Royal Society of London in 1974 and five years later was named to a professorial chair once held by Sir Isaac Newton: Lucasian professor of mathematics, Cambridge University. Beyond these honors he earned a host of honorary degrees, awards, prizes, and lectureships from the major universities and scientific societies of Europe and America. These included the Eddington Medal of the Royal Astronomical Society, in 1975; the Pius XI Gold Medal, in 1975; the Maxwell Medal of the Institute of Physics, in 1976; the Albert Einstein Award of the Lewis and Rose Strauss Memorial Fund (the most prestigious award in theoretical physics), in 1978; the Franklin Medal of the Franklin Institute, in 1981; the Gold Medal of the Royal Society, in 1985; the Paul Dirac Medal and Prize, in 1987; and the Britannica Award, in 1989. By the last decade of the 20th century Stephen Hawking had become one of the best-known scientists in the world. .\ K0+b;
4jMCE&<