博士生入学专业基础课考试大纲 &Wp8u#4L
课程名称:结构动力学 1:C:?ZC#c
一、考试要求 wo2@
hav
考生要对结构动力学的研究对象、研究内容有较深刻的理解,全面系统地掌握结构动力学的基本概念、基本理论和基本方法。明确其在工程学科中的地位与作用,能综合运用结构动力学的理论、方法分析解决工程中的问题。 ";[iZ
二、考试内容 q:>^ "P{
1) 结构动力学的分析模型问题 Bsf7mcXz7z
动力自由度的确定 W^,S6!
离散化方法 }F6<w{|
2) 运动方程建立问题 |s7`F%
惯性力法 JE5
虚功法 {n3EGSP#
变分法 @r(Z%j7
弯曲(剪切、轴向)变形的振动方程 f8 /'%$N
3) 单自由度体系振动分析问题 A*h{Lsx;
动力特性计算 =d
2 r6%v
动力反应计算(简谐荷载、周期荷载、冲击荷载、地面运动等) NE8 jC7
阻尼值的求法 6\7ncF
O3
支座扰动影响 .D,p@4
共振反应 iO/XhSD
非线性反应分析 Bm$"WbOq*R
广义单自由度体系的动力分析 SEwku}
4) 多自由度体系振动分析 <F7kh[L_x
动力特性计算 MiT}L
正交阻尼矩阵的确定 a?}
.Fs
振型叠加法 w1x"
c>1C
动力反应计算 B0$:b!
振型正交性及其物理意义 >%p{38
能量法求体系的基本频率 C
,V%B
矩阵迭代法 8*SDiZ
自由度的缩减 A61^[Y,dX_
线性加速度法 m`#Od^vk
算法的精度与稳定性 RpG+>"1]
5) 无限自由度体系的振动分析 +;BAV
弯曲(剪切、轴向)变形振动方程的边界条件 |Z\R*b"
振型正交性表达式
vr#+0:|
动力反应计算 cUqn<Z<n
三、试卷结构 3K&4i'}V
考试时间: 180分钟;试卷满分:100分 ]Y6cwZOe
1) 题型结构 i"zuil
分析计算题(60分) m^' uipa\
简述或论述题(40分) H|ozDA
2) 内容结构 Rtb :nJ8
分析模型问题(10分) I{JU-Jk|
运动方程建立问题(10分) { pu85'DV
单自由度体系(30分) ~DO4,
多自由度体系(30分) g71[6<D
无限自由度体系(20分) kK8itO
四、参考书目见招生简章