序号 考试科目 参考书目 K<HF!YU#I2
1 抽象代数 《代数学引论》聂灵沼、丁石孙著 第二版 高等教育出版社 2000 FbMX?T"yH
《抽象代数》II 徐明曜、赵春来,北京大学出版社,2007年第一版 :V>M{vd
2 微分几何 《黎曼几何初步》伍鸿熙、沈纯理、虞言林著 北京大学出版社 1989 lNcXBtwK@#
:%M[|Fj
《黎曼几何引论》 陈维桓、李兴校著,北京大学出版社 2002 年,第1章、2 、3 、4章 QGtKu:c.81
5B[kZ?>
《黎曼几何初步》伍鸿熙、沈纯理、虞言林著 北京大学出版社 1989 P
+U=/$o
3 拓扑学 Munkres, J.R. Elements of Algebraic Topology, Addison-Wesley, Menlo Park, California, 1984 *(PQaXx4
Guillemin, V. and Pollack, A., Differential Topology, Prentice-Hall, New Jersey, 1974 wl1JKiodg
Hu, Sze-Tsen, Homotopy Theory (Chapters 1-6), Academic Press, New York, 1959 V9:h4]
4 函数论 Ahlfors, Complex Analysis Sri,sZv
《实变函数论》周民强 ?QGAiu0
《实分析》 陆善镇等 CwKo'PAJ
5 泛函分析 《泛函分析讲义》上册 张恭庆、林源渠 北京大学出版社 :T5p6:
6 常微分方程 《常微分方程》丁同仁,李承治 1LTl=tS#
《微分方程定性理论》第6 、7章 张芷芬等 nwlo,[
7 偏微分方程 《数学物理方程讲义》姜礼尚等 或 >b>3M'
《偏微分方程》周蜀林 北京大学出版社 H\tz"<*``
《二阶椭圆型方程与椭圆型方程组》陈亚浙、吴兰成 zi~_[l-
8 概率论 K.L.Chung, A Course in Probability Theory, Second Edition, Academic Press, New York, 1974 r>N5^
R.T.Durrett, Probability, Theory and Examples, Second Edition, Duxbury Press, 1996 9Wng(ef6G
9 数理统计 《高等统计学》郑忠国,北京大学出版社,1998 @ \ip?=
10 随机过程 《随机过程论》第二版,钱敏平、龚光鲁, 北京大学出版社 3%Jg' Tr+
《应用随机过程》, 钱敏平、龚光鲁, 北京大学出版社 }-H<wQ&x
R.N.Bhattacharya and W.C.Waimire, Stochastic Processes with Applications, John Wiley&Sons, 1990 h>,yqiY4p
11 计算方法 Michael T. Heath, (Scientific Computing: An Introductory Survey, Second Edition, McGraw-Hill Companies, Inc.) IxwOzpr
科学计算导论, 清华大学出版社影印 }
FcWzi
12 模式识别 《模式识别》,边肇祺,清华大学出版社, 1988 或 2000 4ed+'-"m
13 离散数学 (含数理逻辑,集合论与图论,代数结构) yBKkx@o#z
《离散数学教程》屈婉铃等,北京大学出版社, 2002 ,5" vzGLJ
《数理逻辑基础上下册》胡世华,陆钟万 l^x5m]Kt
科学出版社 1983 t?p[w&@M2
《Discrete Mathematics and Its Applications》,K. Rosen,McGraw-Hill,1998; mA:NAV$!s
影印版,机械工业出版社,1999 6 flc
14 最优化方法 《最优化方法》,孙文瑜, 徐成贤, 朱德通, 高等教育出版社 7Wg0-{yK4
15 密码学 D. R. Stinson, Cryptography, Theory and Practice, 2nd Edition. T$/6qZew
中译本,冯登国译,密码学原理与实践(第二版),电子工业出版社,2003。 '`^<*;w
O. Goldreich, Foundations of Cryptography, Basic Tools, 电子工业出版社,2003。 (此书也有中译本) I^'kt[P'FZ
16 微分流形 陈维桓,微分流形初步,高教出版社,第二版,2001。 CK1Xdyf_S
William M. Boothby, An introduction to differential manifolds and Riemannian geometry, d_BO&k