Nf]h8d~
中国科学技术大学 bQvh
Ba? 2016年秋季博士资格考试试卷 eT'Z;ZO M+L8~BD@ @^2?97i
c 代数学 iw
XMe(k >p`ZcFNs" 1." role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">1.1.(40分) 考虑形式幂级数环 C[[x]]={a0+a1x+a2x2+⋯∣ai∈C}" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">C[[x]]={a0+a1x+a2x2+⋯∣ai∈C}C[[x]]={a0+a1x+a2x2+⋯∣ai∈C} 考虑 2" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">22 阶全矩阵环 R=M2(C[[x]])" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">R=M2(C[[x]])R=M2(C[[x]]). Xk
EJ_;: (1) 证明 C[[x]]" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">C[[x]]C[[x]] 为 Noether 整环; W>o>Y$H (2) 描述 C[[x]]" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">C[[x]]C[[x]] 全部的有限生成不可分解模,并给出论证; (a9>gLI0 (3) 给出环 R" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">RR 全部的双边理想,并给出论证; u)4eu,MBT (4) 描述 R" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">RR 上全部的有限生成不可分解左模,以及这些模的自同态环. MS~+P' [S_qi, 2." role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">2.2.(40分) 将 Abel 群与 Z" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ZZ-模等同起来,考虑 Abel 群 G=Z3⊕Z" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">G=Z3⊕ZG=Z3⊕Z. $<s;YhM:u) (1) 列出群 G" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">GG 的全部子群,并给出论证; V{{Xz: (2) 将 G" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">GG 的每个商群都分解成不可分解群的直和,并给出论证; YApm)O
={ (3) 列出群 G" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">GG 的全部直和项,并给出论证; a;h.I}*] (4) 描述 G" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">GG 的自同构群. )j+G4 回顾:Abel 群 G" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">GG 的子群 A" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">AA 称为直和项,若存在另一子群 B" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">BB 满足 G=A+B" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">G=A+BG=A+B 以及 A∩B={0}" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">A∩B={0}A∩B={0}. v;o/M6GL5 J3z:U&%= 3." role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">3.3.(20分) 具体给出代数同构 *A([1l&]i
CS3→∼C×C×M2(C)," role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; text-align: left; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">CS3−→~C×C×M2(C),CS3→~C×C×M2(C), 其中 CS3" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">CS3CS3 为 S3" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">S3S3 的群代数;并给出相应的论证. >3?p 23|; 提示:利用不可约复表示. J|aU}Z8m
|