aN^]bs?R
中国科学技术大学 w/b>awI 2016年秋季博士资格考试试卷 DA<F{n.Z: .]W
;2G ,?l~rc 代数学 A6Ghj{~ "+=Pp 1." role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">1.1.(40分) 考虑形式幂级数环 C[[x]]={a0+a1x+a2x2+⋯∣ai∈C}" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">C[[x]]={a0+a1x+a2x2+⋯∣ai∈C}C[[x]]={a0+a1x+a2x2+⋯∣ai∈C} 考虑 2" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">22 阶全矩阵环 R=M2(C[[x]])" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">R=M2(C[[x]])R=M2(C[[x]]). si_W:mLF{a (1) 证明 C[[x]]" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">C[[x]]C[[x]] 为 Noether 整环; c_
La^HS (2) 描述 C[[x]]" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">C[[x]]C[[x]] 全部的有限生成不可分解模,并给出论证; "-w^D!C (3) 给出环 R" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">RR 全部的双边理想,并给出论证; t#C,VwMe[ (4) 描述 R" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">RR 上全部的有限生成不可分解左模,以及这些模的自同态环. YEzU{J 0,HqE='w 2." role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">2.2.(40分) 将 Abel 群与 Z" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ZZ-模等同起来,考虑 Abel 群 G=Z3⊕Z" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">G=Z3⊕ZG=Z3⊕Z. otO
j^xU (1) 列出群 G" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">GG 的全部子群,并给出论证; i+g~ Uj}h (2) 将 G" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">GG 的每个商群都分解成不可分解群的直和,并给出论证; 93j{.0]X (3) 列出群 G" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">GG 的全部直和项,并给出论证; bW53" `X (4) 描述 G" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">GG 的自同构群. "!O1j
r; 回顾:Abel 群 G" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">GG 的子群 A" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">AA 称为直和项,若存在另一子群 B" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">BB 满足 G=A+B" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">G=A+BG=A+B 以及 A∩B={0}" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">A∩B={0}A∩B={0}. r'/\HWNP ?WQNIX4 3." role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">3.3.(20分) 具体给出代数同构 6B0#4Qrv
CS3→∼C×C×M2(C)," role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; text-align: left; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">CS3−→~C×C×M2(C),CS3→~C×C×M2(C), 其中 CS3" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">CS3CS3 为 S3" role="presentation" style="word-wrap: normal; outline: none; display: inline; line-height: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">S3S3 的群代数;并给出相应的论证. (89Ji'dc 提示:利用不可约复表示. ?~J i-{#X
|